TOP 5 VOLTAGE DROP solutions to SAVE Your Precious Electrical Loads

30 Dec 2021

Est Reading time: 11 minutes

Ever noticed how the lights in your facility flicker even if your lights are brand new? 

Do your motors need more maintenance and replacement as usual?


It is also the fifth technician you’ve approached when it comes to your equipment, but your equipment was changed a month ago and it’s brand new.


You checked your wiring diagrams and design – strange enough, there is nothing wrong with your wiring. Sounds familiar to you?


If so, you might be experiencing severe voltage drop. Severe voltage drops occur when the voltage at the end of a run of cable is lower than at the beginning.


As any length or size of wires will have resistance, running a current through the direct circuit (dc) resistance will cause the voltage drop. Resistance and reactance will increase as long as the length of the wire increases, therefore voltage drops are an issue in places with long cable runs, such as larger buildings or properties such as farms.


Excessive Voltage drops, if not handled carefully, will lead to low voltage powering your equipment, which results in improper, or no operation to your equipment – causing damage to them. Voltage drops also lead to heat at a high resistance connection, which may cause fires.


While there are many solutions out there to solve your voltage drops, it can be challenging to find one that best suits your equipment loads. If not handled properly, your equipment will suffer, which will cost you a lot of time and money.


If you’re reading this by now, chances are, you are still struggling to decide what kind of solutions to solve your voltage drop issues. But not to worry, we’re here to help.


Get ready to say goodbye to voltage drops as we take you down to the 5 types of solutions you can use for your operational needs – we recommend that you take the time to go through this list before deciding. 

Let’s dive in! 


Voltage Drop Compensator

voltage drop

Known for being used in long electrical cables, voltage drop compensators can be found in golf courses, as well in radio broadcasting and telecommunication applications.

So how do voltage drop compensators overcome voltage drop? With voltage drop compensators installed at the end of the cable where the voltage drop is highest, it will monitor and adjust the voltage to ensure your output voltage supply is constantly maintained at less than 1% of nominal voltage values – compliant with British Regulations for Electrical Installation of no more than 4%.

In other words, you will get to safeguard yourself from trouble if you’re doing your own electrical wiring, should your local authorities audit your project.


You’ll also get to save money on cables as voltage drop compensators allow you to reduce the size and number of power cables required to overcome voltage drop values. Installations with smaller sized power cables also become more convenient and cost-efficient.


Voltage drop compensators are perfect for you if your project consists of long cable runs and you want to save up on changing your cables to compensate for your voltage drop.


Voltage drop compensators come in two types: Single Phase CVC range and Three Phase CVC-3P range.


To know more, simply go over here!


Variable Transformer

Variable Transformer Ashley Edison

If your operations consist of quality control testing, or to control lamp circuits, operating motors and other electrical equipment of different voltages, then variable transformers are your best bet in getting the job done.


Variable transformers help to control electrical voltage – if the voltage on the AC line is incorrect, a turn of the variable transformer helps to correct the voltage through its sliding brush. By obtaining AC voltage different from the normal 120/240 V in most operations, it helps you to test your devices in different voltages and different motors, as well as other electrical equipment at various voltages.

The result? Fewer burnouts, in other words, you’ll get to prolong and maximize your equipment and motors’ healthy lifespan – enabling you to enjoy the benefits of paying much lesser maintenance fees.


While variable transformers are built with firm positioning of the coil and internal components, it ensures low operating torque so that the output voltage can be adjusted in the range of zero or above line voltage, depending on your operations.

Having a variable transformer in your operations not only helps you to adjust your voltage, but also control your heater or oven temperature so that there’s more uniform heating, and your equipment won’t suffer from burnouts.

To know more about Variable Transformers, head over here!


Static Uninterrupted Power Supplies (UPS) System

With rising trends such as digitalization and Big Data which have a major impact on the flow of global businesses, there is an increasing need for power protection equipment to help maintain a steady stream of power for business work sites, data centers and healthcare facilities to remain operational.


Millions of dollars can be lost for every hour of process systems downtime, which is why such power protection devices are in place to prevent such power-outage related catastrophes.


If you’re looking for a solution that helps you to save millions of dollars when it comes to your production as well as your operational costs, look no further than placing your investment on Static UPS systems.

Static UPS systems help to create a bridge between utility and generator power to help smooth transition from one power source to another – reducing downtime by providing continuous power to your operations even in outages. While there are several options to choose from, it’s important to note the differences in static UPS systems.


There are two main types of static UPS systems: Offline (line interactive) and online, double conversion static UPS systems.


Image credit: Riello UPS

Offline (line interactive) static UPS system offers the most basic level of power protection. When the main supply is present, the UPS output has a built-in EMI/RFI filter which protects the load from spikes and transients by setting peak voltages to predefined levels.


If the main supply fails or fluctuates outside the UPS’ operating window, a relay will connect the load to inverter output which results in a 4-8 ms transfer time. In normal operations, both the output voltage and frequency will track the input voltage and frequency.


Take note that offline static UPS are only built to protect small, non-critical applications below 1kVA against momentary loss of power. 


Image credits: FS Community

Online UPS systems are the choice for mission-critical applications such as sensitive electronic equipment as they ensure ‘no-break’ switchover in the event of any main supply power failure.


The online UPS system uses a “double-conversion” method (as the name suggests) of accepting AC input, turning it into DC through the rechargeable battery (or battery strings), inverting into 230V to power the electrical equipment.


In an online UPS system, the input AC is charging the battery source which provides power to the output inverter, so that the failure of the input AC won’t activate the transfer switch. In other words, the rectifier will drop out of the circuit and the battery will keep the power steady and constant.


When power is restored, the rectifier will resume carrying the load and charge the batteries, although the charging current is limited to prevent the rectifier from overheating the batteries.

They’re reliable in most electrical operations as they protect the most important equipment every hour, every day. 


AC Power Line Conditioner

Active Voltage Conditioners, known as AC Power Line Conditioners, is a device used to protect sensitive loads by smoothing voltage fluctuations such as spikes, transients and electrical noise. The AC Power Line Conditioner can be electronic or transformer based.


AC Power Line Conditioners are also used to overcome voltage sags, maintaining uptime, productivity and protection against damaging electrical disturbances.


If your operation consists of radios, work offices, power tools and air conditioners, the safest option to take would be the AC Power Line Conditioner.

While intended to increase the quality of electrical power for electrical load equipment, AC Power Line Conditioners also deliver voltage to the proper level enabling load equipment to function adequately.


While the term “AC Power Line Conditioner” is often misquoted, you should try to understand the utility supply problems you are experiencing. If your equipment is experiencing less common electrical noise, an “AC Power Line Conditioner” would be your best bet.


However, if you’re experiencing voltage fluctuations and spikes, the Automatic Voltage Regulator (AVR) will be the appropriate solution for your operations, which we will be covering on the next point. 


Automatic Voltage Regulator (AVR)

voltage drop

Automatic Voltage Regulators (AVR), are voltage solutions that help to maintain voltage levels constantly to electrical equipment that require a steady and reliable voltage supply.

If voltage regulation can’t be achieved even by changing the size of the conductor or source, then it’s time for you to get an AVR. AVRs help to regulate voltage variations and anomalies so that your equipment will get a constant and reliable voltage supply. 

Through the diagram of a servo electronic automatic voltage regulator (AVR), we will understand the working mechanism of AVRs. It is noted that the output voltage is also the one that comes from the Buck-Boost Transformer. With the Buck-Boost Transformer, the machine will receive a stable voltage after correction from the Motorised Variable Transformer.

As the servo electronic design AVR receives an unregulated input voltage, the microprocessors in the electric circuits trigger the motor driver – activating the servo motor. The servo motor’s shaft then moves across the windings of the transformer, automatically adjusting the voltage value to the prescribed limit almost instantly. The controlled voltage will be then supplied through the secondary of the Buck-Boost Transformer, and then fed to the machinery or appliances in use.


In a 3-phase supply, the servo motor of the AVR is coupled with 3 autotransformers for the process of voltage correction.


While there’s no one-size-fits-all when it comes to overcoming voltage drops, it is best to identify your operations, as well as electrical diagrams so that you’ll have a better understanding of what voltage solution best suits your needs.


Now you’re equipped with good knowledge of what voltage solutions to overcome your voltage drop problems, you’re set to create a smooth and conducive electrical system.


Stay tuned for our next blog post as we will show you the different types of AVRs that you can use for your operational needs!


Curious to see how National Grid Operators are easily staying ahead of voltage drop with maximum cost efficiency?


Find out more in this blog here.

Scroll to Top

Stay Safe With Greater Protection

As safety is our utmost priority, Ashley Edison prepares for every scenario possible
—taking the puzzle out of your protection.

Designed And Engineered With Safety In Mind

We leave nothing to chance when it comes to larger capacity units (≥400KVA). By installing high-quality protective acrylic shields in front of live parts, we ensure the safety of your personnel at all times. For enhanced protection during installation, all distances between uninsulated metal parts, busbars, and cable sizes are compliant with IEC61439-1 and IEC 61439-2 guidelines.

Outfitted with fireproof cable trunking, this protective solution safeguards against long fire exposure even in hazardous areas and explosive atmospheres—providing maximum safety for mission critical applications.

Fuss-Free Installation. Seamless Operations.

To ensure ease of installation, Ashley Edison addresses the concerns of contractors and installers by keeping it simple.



We keep the installation process simple and streamlined by allowing sufficient working space for installers. Taking the nut and bolt intrusions into consideration, we ensure that the distance between the uninsulated metal parts, the busbars, and cable sizes are compliant with IEC61439-1 and IEC 61439-2 guidelines.


Even in units with larger capacities, all busbar terminals are clearly marked out, and well positioned in line for easy identification of individual input and output terminations. Installation of these terminations are similar to those practised in high voltage transformers.

Easy Maintenance

Annual Ocular Maintenance
Visual Inspection 230

Conduct Visual Inspection On Voltmeter:

Ensure reading is set to your desired set output voltage value (e.g. 230V).

LED Status

Ensure LED Status Indicators are at “Normal”.

Subtxt LogoAsset 62 RGB

Visual Observation Of Variable Transformer Surface:

Use airbrush for dusty environments if necessary.

Subtxt LogoAsset 72 RGB

Visual observation if carbon brush is not worn out.

Moving Motor

Conduct visual inspection to check variable transformers are all regulating (moving).


Accuracy. Beyond Imagination.

The digitally enhanced Ashley Edison MBB Card ensures pinpoint voltage stabilisation against the most erratic anomalies, allowing you to protect precious uptime, effortlessly. Harnessing ultra precision capabilities to produce some of the tightest output voltage tolerance available in the industry, the Ashley Edison MBB Card delivers ±0.5% voltage accuracy, enabling your load equipment to enjoy optimal voltage supplies, regardless of load change in your electrical system.

Expert Digital Control

Utilising the advantageous measurements of true RMS, the Ashley Edison MBB Card’s reads both perfect, sinusoidal waves, as well as complex, distorted non sinusoidal waves—up to 0.1V accuracy. Coupled with lightning fast response time of 1.5ms, this expert digital control feature equips your load with total voltage protection that is precise, continuous and ultra responsive.

AE Digital Control Display_230v

Universal Presettable Function

The Universal Presettable Function onboard the Ashley Edison MBB Card allows seamless control of your desired output voltage value on all 3 Phases—with just a touch of a button. This multifunctional feature enables each AVR to fully operate with just 1 card, instead of separate cards for each individual phase. Fitted LED Output Voltmeter Display and Alert Indicator better facilitates easy status monitoring while performing maintenance on your AVR.


Microcontroller Unit (MCU)

MicroController Unit (MCU) helps you to deliver high speed and reliable efficiency in the AVR’s operations with less heat generation and reduced power consumption. Used in Supercomputers, Surface Mount Technology (SMT) allows components in the Ashley Edison MBB Card to be aligned closer together, creating a more compact and lightweight end product. Additional safety wire-to-board feature establishes fail-proof connectivity between circuits—so you can work safely on your AVR.